sign in

Username Password

Forget Password ? ? Click Here

Don't Have An Account ? Create One

sign up

name Username Email Mobile Password

To contact us, you can contact us via the following mobile numbers by calling and WhatsApp

+989115682731 Connect To WhatsApp
+989917784643 Connect To WhatsApp

Unlimited Access

For Registered Users

Secure Payment

100% Secure Payment

Easy Returns

10 Days Returns

24/7 Support

Call Us Anytime

The Red Book of Varieties and Schemes by David Mumford (auth.) 1988

The Red Book of Varieties and Schemes

Details Of The Book

The Red Book of Varieties and Schemes

serie: Lecture Notes in Mathematics 1358 
ISBN : 9783540504979, 9783662215814 
publisher: Springer Berlin Heidelberg 
publish year: 1988 
pages: 319 
language: English 
ebook format : PDF (It will be converted to PDF, EPUB OR AZW3 if requested by the user) 
file size: 11 MB 

Related keywords of The Red Book of Varieties and Schemes book : Algebraic Geometry

price : $9.94 14 With 29% OFF

Your Rating For This Book (Minimum 1 And Maximum 5):

User Ratings For This Book:       

You can Download The Red Book of Varieties and Schemes Book After Make Payment, According to the customer's request, this book can be converted into PDF, EPUB, AZW3 and DJVU formats.

Abstract Of The Book

Table Of Contents

Front Matter....Pages N2-V
Front Matter....Pages 1-1
Some algebra....Pages 2-7
Irreducible algebraic sets....Pages 7-15
Definition of a morphism: I....Pages 15-24
Sheaves and affine varieties....Pages 24-35
Definition of prevarieties and morphism....Pages 35-45
Products and the Hausdorff Axiom....Pages 46-55
Dimension....Pages 56-67
The fibres of a morphism....Pages 67-75
Complete varieties....Pages 75-80
Complex varieties....Pages 80-89
Front Matter....Pages 91-92
Spec (R)....Pages 93-108
The category of preschemes....Pages 108-121
Varieties are preschemes....Pages 121-131
Fields of definition....Pages 131-142
Closed subpreschemes....Pages 143-155
The functor of points of a prescheme....Pages 155-167
Proper morphisms and finite morphisms....Pages 168-176
Specialization....Pages 177-189
Front Matter....Pages 191-191
Quasi-coherent modules....Pages 193-205
Coherent modules....Pages 205-215
Front Matter....Pages 191-191
Tangent cones....Pages 215-228
Non-singularity and differentials....Pages 228-242
Étale morphisms....Pages 242-254
Uniformizing parameters....Pages 254-259
Non-singularity and the UFD property....Pages 259-271
Normal varieties and normalization....Pages 272-286
Zariski’s Main Theorem....Pages 286-295
Flat and smooth morphisms....Pages 295-308
Back Matter....Pages 309-315

First 10 Pages Of the book

Comments Of The Book