Unlimited Access
For Registered Users
To contact us, you can contact us via the following mobile numbers by calling and WhatsApp
For Registered Users
100% Secure Payment
10 Days Returns
Call Us Anytime
edition:
Authors: Romyar Sharifi
serie:
publisher:
publish year: 2016
pages: [434]
language: English
ebook format : PDF (It will be converted to PDF, EPUB OR AZW3 if requested by the user)
file size: 2 Mb
Introduction Part 1. A First Course Chapter 1. Set theory 1.1. Sets and functions 1.2. Relations 1.3. Binary operations Chapter 2. Group theory 2.1. Groups 2.2. Subgroups 2.3. Cyclic groups 2.4. Generators 2.5. Direct products 2.6. Groups of isometries 2.7. Symmetric groups 2.8. Homomorphisms 2.9. The alternating group 2.10. Cosets 2.11. Conjugation 2.12. Normal subgroups 2.13. Quotient groups Chapter 3. Ring theory 3.1. Rings 3.2. Families of rings 3.3. Units 3.4. Integral domains 3.5. Ring homomorphisms 3.6. Subrings generated by elements 3.7. Fields of fractions 3.8. Ideals and quotient rings 3.9. Principal ideals and generators 3.10. Polynomial rings over fields 3.11. Maximal and prime ideals Chapter 4. Advanced group theory 4.1. Isomorphism theorems 4.2. Commutators and simple groups 4.3. Automorphism groups 4.4. Free abelian groups 4.5. Finitely generated abelian groups 4.6. Group actions on sets 4.7. Permutation representations 4.8. Burnside's formula 4.9. p-groups 4.10. The Sylow theorems 4.11. Applications of Sylow theory 4.12. Simplicity of alternating groups 4.13. Free groups and presentations Chapter 5. Advanced ring theory 5.1. Unique factorization domains 5.2. Polynomial rings over UFDs 5.3. Irreducibility of polynomials 5.4. Euclidean domains 5.5. Vector spaces over fields 5.6. Modules over rings 5.7. Free modules and generators 5.8. Matrix representations Chapter 6. Field theory and Galois theory 6.1. Extension fields 6.2. Finite extensions 6.3. Composite fields 6.4. Constructible numbers 6.5. Finite fields 6.6. Cyclotomic fields 6.7. Field embeddings 6.8. Algebraically closed fields 6.9. Transcendental extensions 6.10. Separable extensions 6.11. Normal extensions 6.12. Galois extensions 6.13. Permutations of roots Part 2. A Second Course Chapter 7. Topics in group theory 7.1. Semidirect products 7.2. Composition series 7.3. Solvable groups 7.4. Nilpotent groups 7.5. Groups of order p3 Chapter 8. Category theory 8.1. Categories 8.2. Functors 8.3. Natural transformations 8.4. Limits and colimits 8.5. Adjoint functors 8.6. Representable functors 8.7. Equalizers and images 8.8. Additive and abelian categories Chapter 9. Module theory 9.1. Associative algebras 9.2. Homomorphism groups 9.3. Tensor products 9.4. Exterior powers 9.5. Graded rings 9.6. Determinants 9.7. Torsion and rank 9.8. Noetherian rings and modules 9.9. Modules over PIDs 9.10. Canonical forms Chapter 10. Topics in Galois theory 10.1. Norm and trace 10.2. Discriminants 10.3. Extensions by radicals 10.4. Linearly disjoint extensions 10.5. Normal bases 10.6. Profinite groups 10.7. Infinite Galois theory Chapter 11. Commutative algebra 11.1. Localization 11.2. Local rings 11.3. Integral extensions 11.4. Radicals of ideals 11.5. Going up and going down 11.6. Primary decomposition 11.7. Hilbert's Nullstellensatz 11.8. Spectra of rings 11.9. Krull dimension 11.10. Dedekind domains 11.11. Discrete valuation rings 11.12. Ramification of primes Chapter 12. Homological algebra 12.1. Exact sequences 12.2. The snake and five lemmas 12.3. Homology and cohomology 12.4. Projective and injective objects 12.5. Exact functors 12.6. Projective and injective resolutions 12.7. Derived functors 12.8. Tor and Ext 12.9. Group cohomology 12.10. Galois cohomology Chapter 13. Representation theory 13.1. Semisimple modules 13.2. Representations of groups 13.3. Maschke's theorem 13.4. Characters 13.5. Character tables 13.6. Induced representations 13.7. Applications to group theory